51 research outputs found

    An Assessment of the Eye Tracking Signal Quality Captured in the HoloLens 2

    Full text link
    We present an analysis of the eye tracking signal quality of the HoloLens 2s integrated eye tracker. Signal quality was measured from eye movement data captured during a random saccades task from a new eye movement dataset collected on 30 healthy adults. We characterize the eye tracking signal quality of the device in terms of spatial accuracy, spatial precision, temporal precision, linearity, and crosstalk. Most notably, our evaluation of spatial accuracy reveals that the eye movement data in our dataset appears to be uncalibrated. Recalibrating the data using a subset of our dataset task produces notably better eye tracking signal quality.Comment: 10 pages, 10 figure

    Quick Models for Saccade Amplitude Prediction

    Get PDF
    This paper presents a new saccade amplitude prediction model. The model is based on a Kalman filter and regression analysis. The aim of the model is to predict a saccade’s am-plitude extremely quickly, i.e., within two eye position samples at the onset of a saccade. Specifically, the paper explores saccade amplitude prediction considering one or two sam-ples at the onset of a saccade. The models’ prediction performance was tested with 35 subjects. The amplitude accuracy results yielded approximately 5.26° prediction error, while the error for direction prediction was 5.3% for the first sample model and 1.5% for the two samples model. The practical use of the proposed model lays in the area of real-time gaze-contingent compression and extreme eye-gaze aware interaction applications. The paper provides theoretical evaluation of the benefits of saccade amplitude prediction to the gaze-contingent multimedia compression, estimating a 21% improvement in com-pression for short network delays

    Angular offset distributions during fixation are, more often than not, multimodal

    Get PDF
    Typically, the position error of an eye-tracking device is measured as the distance of the eye-position from the target position in two-dimensional space (angular offset).  Accuracy is the mean angular offset.  The mean is a highly interpretable measure of central tendency if the underlying error distribution is unimodal and normal. However, in the context of an underlying multimodal distribution, the mean is less interpretable. We will present evidence that the majority of such distributions are multimodal.  Only 14.7% of fixation angular offset distributions  were  unimodal, and  of  these,  only  11.5%  were normally distributed.  (Of the entire dataset, 1.7% were unimodal and normal.)  This multimodality is true even if there is only a single, continuous tracking fixation segment per trial. We present several approaches to measure accuracy in the face of multimodality. We also address the role of fixation drift in partially explaining multimodality

    Determining Which Sine Wave Frequencies Correspond to Signal and Which Correspond to Noise in Eye-Tracking Time-Series

    Full text link
    The Fourier theorem states that any time-series can be decomposed into a set of sinusoidal frequencies, each with its own phase and amplitude. The literature suggests that some frequencies are important to reproduce key qualities of eye-movements ("signal") and some of frequencies are not important ("noise"). To investigate what is signal and what is noise, we analyzed our dataset in three ways: (1) visual inspection of plots of saccade, microsaccade and smooth pursuit exemplars; (2) analysis of the percentage of variance accounted for (PVAF) in 1,033 unfiltered saccade trajectories by each frequency band; (3) analyzing the main sequence relationship between saccade peak velocity and amplitude, based on a power law fit. Visual inspection suggested that frequencies up to 75 Hz are required to represent microsaccades. Our PVAF analysis indicated that signals in the 0-25 Hz band account for nearly 100% of the variance in saccade trajectories. Power law coefficients (a, b) return to unfiltered levels for signals low-pass filtered at 75 Hz or higher. We conclude that to maintain eye movement signal and reduce noise, a cutoff frequency of 75 Hz is appropriate. We explain why, given this finding, a minimum sampling rate of 750 Hz is suggested.Comment: Pages-16, Figures-11, Tables-4. arXiv admin note: text overlap with arXiv:2209.0765

    Analysis of Heuristic and Digital Filters as Applied to Video-oculography Signals

    Full text link
    In 1993, Stampe [1993] suggested two "heurisitic" filters that were designed for video-oculography data. Several manufacturers (e.g., SR-Research, Tobii T60 XL and SMI) have employed these filters as an option for recording eye-movements. For the EyeLink family of eye-trackers, these two filters are referred to as standard (STD) or EXTRA. We have implemented these filters as software functions. For those who use their eye-trackers for data-collection only, this will allow users to collect unfiltered data and simultaneously have access to unfiltered, STD filtered and EXTRA filtered data for the exact same recording. Based on the literature, which has employed various eye-tracking technologies, and our analysis of our EyeLink-1000 data, we conclude that the highest signal frequency content needed for most eye-tracking studies (i.e., saccades, microsaccades and smooth pursuit) is around 100 Hz, excluding fixation microtremor. For those who collect their data at 1000 Hz or higher, we test two zero-phase low-pass digital filters, one with a cutoff of 50 Hz and one with a cutoff of 100 Hz. We perform a Fourier (FFT) analysis to examine the frequency content for unfiltered data, STD data, EXTRA filtered data, and data filtered by low-pass digital filters. We also examine the frequency response of these filters. The digital filter with the 100 Hz cutoff dramatically outperforms both heuristic filters because the heuristic filters leave noise above 100 Hz. In the paper we provide additional conclusions and suggest the use of digital filters in scenarios where offline data processing is an option.Comment: 19 pages, 12 figures, 5 table
    • …
    corecore